Surgical robot automation has attracted increasing research interest over the past decade, expecting its huge potential to benefit surgeons, nurses and patients. Recently, the learning paradigm of embodied AI has demonstrated promising ability to learn good control policies for various complex tasks, where embodied AI simulators play an essential role to facilitate relevant researchers. However, existing open-sourced simulators for surgical robot are still not sufficiently supporting human interactions through physical input devices, which further limits effective investigations on how human demonstrations would affect policy learning. In this paper, we study human-in-the-loop embodied intelligence with a new interactive simulation platform for surgical robot learning. Specifically, we establish our platform based on our previously released SurRoL simulator with several new features co-developed to allow high-quality human interaction via an input device. With these, we further propose to collect human demonstrations and imitate the action patterns to achieve more effective policy learning. We showcase the improvement of our simulation environment with the designed new features and tasks, and validate state-of-the-art reinforcement learning algorithms using the interactive environment. Promising results are obtained, with which we hope to pave the way for future research on surgical embodied intelligence. Our platform is released and will be continuously updated in the website: https://med-air.github.io/SurRoL/
translated by 谷歌翻译
Large language models (LLMs) have demonstrated impressive capabilities in natural language understanding and generation, but the quality bar for medical and clinical applications is high. Today, attempts to assess models' clinical knowledge typically rely on automated evaluations on limited benchmarks. There is no standard to evaluate model predictions and reasoning across a breadth of tasks. To address this, we present MultiMedQA, a benchmark combining six existing open question answering datasets spanning professional medical exams, research, and consumer queries; and HealthSearchQA, a new free-response dataset of medical questions searched online. We propose a framework for human evaluation of model answers along multiple axes including factuality, precision, possible harm, and bias. In addition, we evaluate PaLM (a 540-billion parameter LLM) and its instruction-tuned variant, Flan-PaLM, on MultiMedQA. Using a combination of prompting strategies, Flan-PaLM achieves state-of-the-art accuracy on every MultiMedQA multiple-choice dataset (MedQA, MedMCQA, PubMedQA, MMLU clinical topics), including 67.6% accuracy on MedQA (US Medical License Exam questions), surpassing prior state-of-the-art by over 17%. However, human evaluation reveals key gaps in Flan-PaLM responses. To resolve this we introduce instruction prompt tuning, a parameter-efficient approach for aligning LLMs to new domains using a few exemplars. The resulting model, Med-PaLM, performs encouragingly, but remains inferior to clinicians. We show that comprehension, recall of knowledge, and medical reasoning improve with model scale and instruction prompt tuning, suggesting the potential utility of LLMs in medicine. Our human evaluations reveal important limitations of today's models, reinforcing the importance of both evaluation frameworks and method development in creating safe, helpful LLM models for clinical applications.
translated by 谷歌翻译
Zero-Shot Learning has been a highlighted research topic in both vision and language areas. Recently, most existing methods adopt structured knowledge information to model explicit correlations among categories and use deep graph convolutional network to propagate information between different categories. However, it is difficult to add new categories to existing structured knowledge graph, and deep graph convolutional network suffers from over-smoothing problem. In this paper, we provide a new semantic enhanced knowledge graph that contains both expert knowledge and categories semantic correlation. Our semantic enhanced knowledge graph can further enhance the correlations among categories and make it easy to absorb new categories. To propagate information on the knowledge graph, we propose a novel Residual Graph Convolutional Network (ResGCN), which can effectively alleviate the problem of over-smoothing. Experiments conducted on the widely used large-scale ImageNet-21K dataset and AWA2 dataset show the effectiveness of our method, and establish a new state-of-the-art on zero-shot learning. Moreover, our results on the large-scale ImageNet-21K with various feature extraction networks show that our method has better generalization and robustness.
translated by 谷歌翻译
We introduce \textsc{PoliteRewrite} -- a dataset for polite language rewrite which is a novel sentence rewrite task. Compared with previous text style transfer tasks that can be mostly addressed by slight token- or phrase-level edits, polite language rewrite requires deep understanding and extensive sentence-level edits over an offensive and impolite sentence to deliver the same message euphemistically and politely, which is more challenging -- not only for NLP models but also for human annotators to rewrite with effort. To alleviate the human effort for efficient annotation, we first propose a novel annotation paradigm by a collaboration of human annotators and GPT-3.5 to annotate \textsc{PoliteRewrite}. The released dataset has 10K polite sentence rewrites annotated collaboratively by GPT-3.5 and human, which can be used as gold standard for training, validation and test; and 100K high-quality polite sentence rewrites by GPT-3.5 without human review. We wish this work (The dataset (10K+100K) will be released soon) could contribute to the research on more challenging sentence rewrite, and provoke more thought in future on resource annotation paradigm with the help of the large-scaled pretrained models.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Although recent deep learning methods, especially generative models, have shown good performance in fast magnetic resonance imaging, there is still much room for improvement in high-dimensional generation. Considering that internal dimensions in score-based generative models have a critical impact on estimating the gradient of the data distribution, we present a new idea, low-rank tensor assisted k-space generative model (LR-KGM), for parallel imaging reconstruction. This means that we transform original prior information into high-dimensional prior information for learning. More specifically, the multi-channel data is constructed into a large Hankel matrix and the matrix is subsequently folded into tensor for prior learning. In the testing phase, the low-rank rotation strategy is utilized to impose low-rank constraints on tensor output of the generative network. Furthermore, we alternately use traditional generative iterations and low-rank high-dimensional tensor iterations for reconstruction. Experimental comparisons with the state-of-the-arts demonstrated that the proposed LR-KGM method achieved better performance.
translated by 谷歌翻译
In this paper, we introduce a novel approach for ground plane normal estimation of wheeled vehicles. In practice, the ground plane is dynamically changed due to braking and unstable road surface. As a result, the vehicle pose, especially the pitch angle, is oscillating from subtle to obvious. Thus, estimating ground plane normal is meaningful since it can be encoded to improve the robustness of various autonomous driving tasks (e.g., 3D object detection, road surface reconstruction, and trajectory planning). Our proposed method only uses odometry as input and estimates accurate ground plane normal vectors in real time. Particularly, it fully utilizes the underlying connection between the ego pose odometry (ego-motion) and its nearby ground plane. Built on that, an Invariant Extended Kalman Filter (IEKF) is designed to estimate the normal vector in the sensor's coordinate. Thus, our proposed method is simple yet efficient and supports both camera- and inertial-based odometry algorithms. Its usability and the marked improvement of robustness are validated through multiple experiments on public datasets. For instance, we achieve state-of-the-art accuracy on KITTI dataset with the estimated vector error of 0.39{\deg}. Our code is available at github.com/manymuch/ground_normal_filter.
translated by 谷歌翻译
We consider an offline reinforcement learning (RL) setting where the agent need to learn from a dataset collected by rolling out multiple behavior policies. There are two challenges for this setting: 1) The optimal trade-off between optimizing the RL signal and the behavior cloning (BC) signal changes on different states due to the variation of the action coverage induced by different behavior policies. Previous methods fail to handle this by only controlling the global trade-off. 2) For a given state, the action distribution generated by different behavior policies may have multiple modes. The BC regularizers in many previous methods are mean-seeking, resulting in policies that select out-of-distribution (OOD) actions in the middle of the modes. In this paper, we address both challenges by using adaptively weighted reverse Kullback-Leibler (KL) divergence as the BC regularizer based on the TD3 algorithm. Our method not only trades off the RL and BC signals with per-state weights (i.e., strong BC regularization on the states with narrow action coverage, and vice versa) but also avoids selecting OOD actions thanks to the mode-seeking property of reverse KL. Empirically, our algorithm can outperform existing offline RL algorithms in the MuJoCo locomotion tasks with the standard D4RL datasets as well as the mixed datasets that combine the standard datasets.
translated by 谷歌翻译
We propose eXtensible Prompt (X-Prompt) for prompting a large language model (LLM) beyond natural language (NL). X-Prompt instructs an LLM with not only NL but also an extensible vocabulary of imaginary words that are introduced to help represent what NL words hardly describe, allowing a prompt to be more descriptive. Like NL prompts, X-Prompt is out-of-distribution (OOD) robust, for which we propose context-guided learning with prompt augmentation to learn its imaginary words for general usability, enabling them to use in different prompt contexts for fine-grain specifications. The promising results of X-Prompt demonstrate its potential of approaching advanced interaction between humans and LLMs to bridge their communication gap.
translated by 谷歌翻译
Deep learning based methods have significantly boosted the study of automatic building extraction from remote sensing images. However, delineating vectorized and regular building contours like a human does remains very challenging, due to the difficulty of the methodology, the diversity of building structures, and the imperfect imaging conditions. In this paper, we propose the first end-to-end learnable building contour extraction framework, named BuildMapper, which can directly and efficiently delineate building polygons just as a human does. BuildMapper consists of two main components: 1) a contour initialization module that generates initial building contours; and 2) a contour evolution module that performs both contour vertex deformation and reduction, which removes the need for complex empirical post-processing used in existing methods. In both components, we provide new ideas, including a learnable contour initialization method to replace the empirical methods, dynamic predicted and ground truth vertex pairing for the static vertex correspondence problem, and a lightweight encoder for vertex information extraction and aggregation, which benefit a general contour-based method; and a well-designed vertex classification head for building corner vertices detection, which casts light on direct structured building contour extraction. We also built a suitable large-scale building dataset, the WHU-Mix (vector) building dataset, to benefit the study of contour-based building extraction methods. The extensive experiments conducted on the WHU-Mix (vector) dataset, the WHU dataset, and the CrowdAI dataset verified that BuildMapper can achieve a state-of-the-art performance, with a higher mask average precision (AP) and boundary AP than both segmentation-based and contour-based methods.
translated by 谷歌翻译